A study on microstructure and recrystallization kinetics on low deformed pure ETP copper

Author:

Harshavardhana N1,Sundar Singh Sivam SP1ORCID,Kumar Gulshan2,Saxena Ashish Kumar3ORCID

Affiliation:

1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, India

2. Department of Mechanical Engineering, Birla Institute of Technology and Science, Dubai, UAE

3. Center for Innovative Manufacturing Research, School of Mechanical Engineering, VIT Vellore, Vellore, Tamil Nadu, India

Abstract

The kinetics of microstructural changes plays a vital role in designing the material properties. There are various microstructural transformation phenomena such as recovery, recrystallization, and strain-induced boundary migration, which affect the properties of materials. This study aims to investigate the kinetics of low-strain deformed electrolytic tough pitch (ETP) copper (less than 23% reduction in thickness), where an optimum value of hardness and conductivity is obtained after heat treatment when compared with a high strain deformed sample. The activation energy values for the low deformed sample calculated from changes in hardness, conductivity, and microstructure are in the range of 39–99 kJ/mol, 30–90 kJ/mol, and 40–51 kJ/mol, respectively, which is low compared to high deformed values. Careful microstructural investigation of the low-strain deformed copper shows evidence of strain-induced boundary migration, whereas high strain deformed copper shows evidence of recrystallization. The strain-induced boundary migration plays an important role in “cleaning up” some of the deformed grains with a composite microstructure consisting of deformed grains that preserve high hardness, while some grains have low defect density which helps to obtain high conductivity after heat treatment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3