Mechanical properties of a novel negative Poisson's ratio gradient structure

Author:

Qi Huiwen1,Lu Guangyang1,Zhu Dongmei1ORCID,Liu Guoyong1

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, PR China

Abstract

A novel cellular structure is proposed based on bionic structure with negative Poisson's ratio characteristic, and the cell is periodically expanded in the in-plane direction to create a new honeycomb structure. The influence of gradient changes of the structural parameters on the load-bearing capacity and damping characteristics of the structure is investigated through a combination method of finite element numerical simulations and experiments. The results indicate that the concentric gradient arrangement of cell wall thickness and angle parameters, and the symmetrical gradient arrangement of cell height, wall thickness and angle parameters have the most significant influence on the static bearing capacity of the structure. In contrast, the gradient arrangement under the corner circle diameter has minimal effect on the static bearing capacity of the structure. Under the same conditions, the peak values of the transmissibility of C2 (large angle at constraint end and loading end, and smaller angle in the middle) and C3 structures (angle gradually increases from the loading end to the constraint end) are significantly reduced between the frequency 2 Hz and 1024 Hz. The peak values of the transmissibility of the structures C2 and C3 are respectively decreased by 20% and 25% compared to that of the non-gradient structure. This shows that the vibration damping effect of these two structures is better. The structure with the gradient change and the structure without the gradient change of the new honeycomb structure can both achieve certain vibration reduction and isolation from the middle to high frequency range.

Publisher

SAGE Publications

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3