Tungsten carbide material tribology and circular economy relationship in polymer and composites industries

Author:

Hussain Abrar1ORCID,Podgursky Vitali1,Antonov Maksim1,Abbas Muhammad Mujtaba23ORCID,Awan Muhammad Rizwan45

Affiliation:

1. Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia

2. Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan

3. Center for Energy Science, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia

4. Department of Mechanical Engineering, Universitat Politechnica De Catalunya (UPC)-Barcelona Tech, Barcelona, Spain

5. Department of Mechanical Engineering, The Superior University Lahore, Lahore, Punjab, Pakistan

Abstract

The implementation of the circular economy concept in industries demands experimental and innovative investigations. The set of strategies and paradigms that express the theoretical base of the circular economy plays a vital role in the enhancement of the quality and performance of polymer and composite materials. In this article, tungsten carbide material is advanced for tribological investigations. The scanning electron microscope and an optical and mechanical profilometer were used for the analysis of cotton polymer and tungsten carbide ball surfaces. A newly developed tribometry technique was introduced to investigate the coefficient of friction, wear, and deformation. The cotton surface was found damaged and rough. The tungsten carbide balls showed low roughness and higher hardness. The average surface roughness parameters Ra, Rz, and Rp of tungsten carbide balls were 0.10, 0.15, and 0.20, respectively. The average friction constant values were found to be 0.12–0.15 in the perpendicular direction and 0.11–0.17 in the parallel direction. Reciprocation distance increment has been used for industrial optimization. The coefficient of friction remained constant and slightly deformed cotton polymer. Based on the friction values, deformation, wear, and morphology evaluations, tungsten carbide ceramic materials could be used operationally for surface alterations of industrial machinery parts. The results could also enhance the quality and performance of polymer and composite products.

Funder

Tallinna Tehnikaülikool

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3