Influence of pulsed Nd:YAG laser welding power on the microstructures and nano creep behaviour of Ti5Al2.5Sn beads

Author:

Asif Huzaifa1ORCID,Khan Fahd Nawaz1,Shehbaz Tauheed1ORCID,Junaid Massab2,Baig Mirza Nadeem1

Affiliation:

1. Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

2. Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

Abstract

Pulsed Nd:YAG laser beam welding was performed at five different power levels (360 W, 380 W, 400 W, 420 W and 440 W), and the relationship between microstructure and nano creep behaviour was investigated for Ti5Al2.5Sn alloy. Microstructural analysis indicated a reduction in grain size in fusion zone, with an increase in the average laser power. In the fusion zone (FZ) of all the beads, acicular α and ά martensite were observed and confirmed by SEM analysis. Due to the formation of the α and ά phases during welding, the microhardness and nanohardness in the FZ increased by ∼71% and ∼58%, respectively, above that of the base alloy. Nano creep analysis suggested diffusional creep as the deformation mechanism in all the beads, except the one performed at an average power of 440 W since its stress exponent was less than 2.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3