Optimization of target thickness and investigation on the effect of heat treatment on the ballistic performance of aluminium alloy 7075 targets against hard steel core projectile

Author:

Praveen Rajendran1ORCID,Koteswara Rao Sajja Rama1,Kumar Saurabh Suresh2,Suresh Kumar Sundaram1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, India

2. Ballistic Research Centre and Testing Range, National Forensic Sciences University, Gandhinagar, Gujarat, India

Abstract

Optimization of target thickness and influence of heat treatment condition on the high velocity impact response of aluminium alloy 7075 targets have been determined. Both experimental and numerical studies were conducted using a 7.62 mm hard steel core projectile. The numerical simulation used a 7.62 mm Ogival nose shaped projectile with a target thickness ranging from 20 to 26 mm. High velocity impact experiments on T651 and solution treated targets, with rolled plate thicknesses ranging from 21 to 25 mm were carried out to validate the numerical findings. The microhardness of the targets was measured using Vicker's microhardness tester and fractographs were examined using a scanning electron microscope. The projectile penetrated regions were analyzed using light microscopy. A good correlation between the numerical and experimental ballistic behaviour of aluminium alloy 7075 targets was observed and an optimum target thickness of 21 and 24 mm was observed for the T651 and solution treated targets to prevent the projectile's penetration. It was also noted that, after the projectile's impact, solution treated targets had higher microhardness compared to T651 condition targets. This is due to higher work hardening of solution treated targets near the penetration channel. Even though T651 targets have a lower depth of penetration compared to solution treated targets, ‘splintering’ failure of the T651 targets is observed. In contrast, ‘petalling’ and ‘plugging’ kinds of failures were noticed on the solution treated targets. Thus, solution treatment of ballistic targets may enhance the ballistic limit of armoured vehicles.

Funder

Defence Research and Development Organisation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3