A new methodology for thermostructural topology optimization: Analytical definition and validation

Author:

Caivano R1ORCID,Tridello A1,Codegone M2,Chiandussi G1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy

2. Department of Mathematical Sciences ‘G. L. Lagrange’, Politecnico di Torino, Turin, Italy

Abstract

In the last few years, the rapid diffusion of components produced through additive manufacturing processes has boosted the research on design methodologies based on topology optimization algorithms. Structural topology optimization is largely employed since it permits to minimize the component weight and maximize its stiffness and, accordingly, optimize its resistance under structural loads. On the other hand, thermal topology optimization has been less investigated, even if in many applications, such as turbine blades, engines, heat exchangers, thermal loads have a crucial impact. Currently, structural and thermal optimizations are mainly considered separately, despite the fact that they are both present and coupled in components in service condition. In the present paper, a novel methodology capable of defining the optimized structure under simultaneous thermomechanical constraints is proposed. The mathematical formulation behind the optimization algorithm is reported. The proposed methodology is finally validated on literature benchmarks and on a real component, confirming that it permits to define the topology, which presents the maximized thermal and mechanical performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creative Methods;Design for Additive Manufacturing;2024

2. Defect-Driven topology optimization for fatigue design of additive manufacturing structures: Application on a real industrial aerospace component;Engineering Failure Analysis;2022-12

3. Effect-Engineering by Additive Manufacturing;Innovative Product Development by Additive Manufacturing 2021;2022-11-13

4. Defect-Driven Topology Optimisation: TopFat algorithm validation via 3D components re-design for real industrial applications;Procedia Structural Integrity;2022

5. Kreative Methoden;Entwicklungsmethodik für die Additive Fertigung;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3