Study on mechanical and wear characterization of novel Co30Cr4Mo biomedical alloy with added nickel under dry and wet sliding conditions using Taguchi approach

Author:

Aherwar Amit1,Singh Amit12,Patnaik Amar2

Affiliation:

1. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, India

2. Centre for Tribology, Malaviya National Institute of Technology, Jaipur, India

Abstract

This paper investigates the effect of nickel particulate on mechanical behavior and sliding wear performance of novel Co30Cr4Mo alloy for orthopedic hip implant application with and without an introduction of distilled water (i.e. both dry and wet conditions) medium. The mechanical behavior is examined by the micro-hardness tester and the compression testing machine, while the wear performance is analyzed through a pin-on-disc tribometer where the samples slide against a counter disc made up of hardened alloy steel (EN-31) under different operating conditions at room temperature. Scanning electron microscope, atomic force microscopy, and X-ray diffraction are used to examine the surface morphology, worn surface profile, and cross-sectional microstructure of the fabricated alloy (Co30Cr4Mo) composite. In this study, at the beginning, steady state experimental analysis is carried out to find the volumetric wear loss and friction coefficient by varying the sliding velocity and normal load, respectively. After obtaining the steady state results, the Taguchi design of experiment has been conducted followed by statistical analysis of variance to identify the significant factor setting for obtaining better performance output. From the analysis, it is found that by increasing the nickel wt.%, the hardness and the compression strength of the fabricated alloy composites are increased. Furthermore, the fabricated alloy composite with 1 wt.% Ni shows the better wear resistance under different operating conditions in both dry and wet media. This study will give an idea for hip implant application but not direct replacement of human joints. In future, this study may be extended in more detail for biomedical applications for replacement of either human hip implant or animal implant, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3