Affiliation:
1. Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
In this study, the effects of nano-[Formula: see text] and carbon nanotubes on the friction and wear properties of carbon-epoxy woven composites have been explored. The unfilled carbon fabric composites and carbon fabric composites filled with carbon nanotubes and nano-[Formula: see text] were fabricated by vacuum infusion process. The worn surfaces were examined and possible wear mechanisms of unfilled and filled carbon fabric composites were discussed. In addition, the friction coefficient curves of unfilled and filled carbon fabric composites were analyzed and compared. The experimental results showed that either of the two nano-particles improved the friction coefficient and wear rate of carbon fabric composites; however, better improvement was observed for nano-SiO2. By adding these nano-particles to unfilled carbon fabric composites, a primary steady-state period with a low friction coefficient appeared in the friction coefficient curve of the composites, which indicates enhancement in bonding strength between carbon fiber and epoxy matrix due to the interfacial reinforcing action of the nano-particles.
Subject
Mechanical Engineering,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献