Combined Gleeble physical welding simulation and low-cycle thermo-mechanical fatigue for heat-affected zone material for 9Cr steel: Experimental testing and through-process model

Author:

MacArdghail Padraig12,Barrett Richard A123,Harrison Noel123,Sabirov Ilchat45,LLorca Javier45,Leen Sean B123ORCID

Affiliation:

1. Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland

2. Ryan Institute for Marine, Energy and Environment, University of Galway, Galway, Ireland

3. I-Form Advanced Manufacturing Research Centre, Dublin, Ireland

4. IMDEA Materials Institute, Madrid, Spain

5. Department of Materials Science, Polytechnic University of Madrid, Madrid, Spain

Abstract

There is an urgent need to operate thermal power plant at significantly higher temperatures, pressures and flexibility, in order to reduce emissions, increase efficiency and facilitate uptake of renewable energy. This demands significantly improved design of welded connections for thermo-mechanical fatigue (TMF). A common mode of high temperature failure for welded 9Cr steels in such plant is Type IV failure, due to reduced hardness in the inter-critical heat affected zone (IC-HAZ). Little or no work has been previously conducted on TMF characterisation of HAZ of 9Cr steels. This work presents development of a combined Gleeble physically-simulated welding process for P91 heat affected zone, based on measured thermal histories from bead-on-plate welding trials, with in-situ low cycle thermo-mechanical fatigue up to 650°C. The simulated welding process, including post-weld heat treatment (PWHT), is shown to have significant effect on both microstructure and TMF behaviour, including life. The as-welded condition is shown to have the cyclically hardest stable response and the longest life, whereas the PWHT and parent material (PM) cases have similar cyclically soft responses and lives. A recently-developed through-process, physically-based, thermal-metallurgical-mechanical model is adapted and applied to the simulated welding thermal cycle and TMF testing for PM and HAZ specimens. The model is calibrated and validated against high temperature low-cycle fatigue and low-cycle TMF data for PM in the range 400 to 600°C, for different strain-ranges and strain-rates. It is also shown to capture some observed general trends for the simulated HAZ-TMF testing, especially the significant softening effect of PWHT and the significant increase in cyclic strength for the as-welded condition.

Funder

Science Foundation Ireland

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3