The use of the theory of critical distance and the stress-gradient approach in the fatigue life estimation of notched components

Author:

Spaggiari Andrea1,Castagnetti Davide1,Dragoni Eugenio1,Bulleri Simone2

Affiliation:

1. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy

2. Galtech S.r.l., Reggio Emilia, Italy

Abstract

Fatigue life prediction for machine components is a fundamental factor in the industrial world, and therefore several methods can be traced in technical literature to estimate life of notched components. The present paper correlates the classical stress-gradient approach, or support factor method, proposed by Siebel, Neuber and Petersen with the more recent theory of critical distance approach by Tanaka and Taylor. On one hand, the main asset of the support factor method is the punctual information about the stresses needed to estimate the effective stress, namely the maximum stress and stress gradient at the hot spot. By contrast, the theory of the critical distance needs the calculation of the stress distribution for a finite depth inside the material. The main drawback of the support factor method is that the material parameter ρ* is available only for a limited series of materials. In order to overcome this limitation, the paper investigates the correlation between the material parameter ρ* and the critical distance L by relying on a parametric stress function. The proposed correlation aims at giving a simple method for the industrial engineers, which often needs straightforward methods to tackle practical problems. A comparison between the two methods is carried out by considering three different benchmark geometries: a typical V-notched specimen, a vessel under internal pressure and a complex industrial hydraulic control valve. In the first two benchmarks, the effective stresses are analytically retrieved and compared using both methods while an elastic finite element analysis is performed for the last one. The close match of the fatigue life prediction between the methods supports the possibility to exploit the data available in literature for the critical distance in order to estimate the effective stresses with the support factor method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3