Development of biocomposites using novel green pea pod lignin and hybridized pod sheath fibre-bamboo epoxy composite for human prosthetic application

Author:

Sujithra R1ORCID,Saritha D2

Affiliation:

1. Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allhabad, Uttar Pradesh, India

2. Department of Chemistry, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India

Abstract

In this research epoxy-based biocomposites were developed using novel green pea pod lignin and hybridized pod sheath fibre-bamboo epoxy composite for human prosthetic applications. The outcomes of this investigation demonstrates that the inclusion of lignin, up to 1.0 vol. % yields a tensile strength of 159 MPa, flexural strength of 202 MPa, interlaminar shear strength of 28.6 Mpa, and Izod impact toughness of 5.93 J. In terms of wear resistance, the composite designation with 2.0 vol. % of lignin exhibited lower wear loss of 0.01 g and 0.38 of coefficient of friction. Both the mechanical and wear results are statistically significant with P < 0.05), confirmed by analysis of variance. Additionally, the highest fatigue life counts were recorded for composite with 1 vol. % of lignin with counts of 34,632 cycles for 30% of the ultimate tensile strength. Furthermore, the addition of lignin up to 2.0 vol. % resulted in the lowest contact angle of 82° and water absorption percentage of 0.16%. Scanning electron microscopy analysis indicated that the incorporation of surface-treated fibres and lignin uniformly dispersed and adhered more. Based on these findings, it is evident that the composite containing 40 vol. % of sheath/bamboo hybridized fibre with 1.0 vol. % of lignin in the epoxy matrix represents the most favourable outcome for prosthetic applications.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3