Development of an in situ alloying method for high-performance welding processes to achieve an LTT effect by local modification of the alloy content

Author:

Gamerdinger M1ORCID,Clemens M1,Olschok S1,Reisgen U1

Affiliation:

1. RWTH Aachen University, Welding and Joining Institute, Aachen, Nordrhein-Westfalen, Germany

Abstract

One possible option for increasing the fatigue strength of welded joints is the use of so-called low transformation temperature (LTT) alloys. The aim is to introduce residual compressive stresses into the weld to counteract crack initiation and propagation. Until now, there has been no application of an LTT effect to high-performance welding processes such as the laser beam submerged arc hybrid welding process (LUPuS hybrid). First, the LUPuS hybrid single-wire process was further developed into the LUPuS tandem hybrid process. This makes it possible to equip the two submerged arc welding torches with different commercially available filler wires. The aim of the work is to further develop the LUPuS tandem hybrid welding process to enable the use of the LTT effect. The in situ alloying process for obtaining the LTT effect from commercially available material combinations was extended to the two-wire process. The alloy obtained was investigated by means of energy dispersive x-ray spectroscopy and hardness measurements and the influence on residual stresses was determined by the borehole method supported by electronic speckle pattern interferometry.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3