Investigation on mechanical properties and deformation behavior of copper-based three-phase metal matrix composite: Experimental and micro-macro-mechanical finite element analysis

Author:

Saxena Ambuj1ORCID,Dwivedi Shashi Prakash1ORCID,Maurya Nagendra Kumar1ORCID,Srivastava Ashish Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, G. L. Bajaj Institute of Technology & Management, Greater Noida, India

Abstract

The present study involved development of copper-based metal matrix composite, reinforced with waste EN 31 steel chips and TiB2 ceramic particles. Waste EN 31 steel chips and TiB2 ceramic particles were ball-milled for 100 h to obtain a single entity. The composite material was produced with a stir-casting technique, followed by a squeeze pressure process. The addition of Cu + 10 wt% of waste steel chips + 5 wt% of TiB2 improved the tensile strength of the copper matrix by about 68.35%. Furthermore, the addition of Cu + 5 wt% of waste steel chips + 10 wt% of TiB2 and Cu + 12.5 wt% of waste steel chips + 2.5 wt% of TiB2 increased the hardness and toughness of the copper matrix by about 133.33% and 28.57%, respectively. The addition of Cu + 10 wt% waste steel chips + 5 wt% of TiB2 ensured minimal corrosion weight loss in the metal matrix composite as a result of low porosity and a strong bond between the molecules. Further, representative volume element (size: 225 × 225 × 225 nm)-based finite element analysis was done to explain the micro-mechanical deformation, interfacial strength of matrix-particle interaction and damage behavior of Cu + 10 wt% of waste steel chips + 5 wt% of TiB2 metal matrix composite. A user material sub-routine model was also written and implemented with the help of FORTRAN subroutines to simulate the macro-mechanical tension test process of Cu + 10 wt% waste steel chips + 5 wt%TiB2 metal matrix composite. The results revealed a good agreement between the micro-mechanical and macro-mechanical finite element analysis models on the one hand and the experimental results on the other. Further, the representative volume element (with matrix and particles) showed about 59% and 66.5% higher tensile strength compared to the matrix–particle interface and the matrix (without particles), respectively. The percentage difference between the micro-mechanical finite element analysis and the experiments as well as the macro-mechanical finite element analysis and the experiments was found to be 5.58% and 9.64%, respectively. The finite element analysis results established that the waste steel chip powder particles exhibited greater stress than the TiB2 powder particles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3