Affiliation:
1. Design against Failure and Fracture Group, School of Engineering, Indian Institute of Technology Mandi, Mandi, India
Abstract
In this paper, the influence of plasticity graded property and thermal boundary conditions have been investigated on the fracture parameter, i.e. J-integral using the extended finite element method. A complete computational methodology has been presented to model elasto-plastic fracture problems with geometrical and material nonlinearities. For crack discontinuity modeling, a partition of unity enrichment concept was employed with additional mathematical functions like Heaviside and branch enrichment for crack discontinuity and stress field gradient, respectively. The modeling of the stress–strain relationship of the material is implemented using the Ramberg–Osgood material model and geometric nonlinearity is modeled using an updated Lagrangian approach. The isotropic hardening and von-Mises yield criteria are considered to check the plasticity condition. The elastic predictor–plastic corrector algorithm is employed to capture elasto-plastic stress in a cracked domain. The variation in plasticity properties for plastically graded material is modeled by exponential law. Furthermore, the nonlinear discrete equations are numerically solved using a Newton–Raphson iterative scheme. Various cracked problem geometries subjected to thermal (adiabatic and isothermal conditions) and thermo-mechanical loads are simulated for stress contours and J-integrals using the elasto-plastic fracture mechanics approach. A comparison of the results obtained using extended finite element method with literature and the finite element analysis (FEA) package shows the accuracy and effectiveness of the presented computational approach. A component-based problem, i.e. a Brazilian disc subjected to thermo-mechanical loading, has been solved to show the adaptability of this work.
Funder
Indian Institute of Technology Mandi
Subject
Mechanical Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献