Estimation of mechanical properties of friction stir processed Al 6061/Al2O3-Tib2 hybrid metal matrix composite layer via artificial neural network and response surface methodology

Author:

Khojastehnezhad Vahid M1,Pourasl Hamed H1ORCID,Bahrami Arian2ORCID

Affiliation:

1. Department of Mechanical Engineering, Cyprus International University, Nicosia, Turkey

2. Department of Mechanical Engineering, Eastern Mediterranean University, Eastern Mediterranean University, Magosa, TRNC, Turkey

Abstract

Friction stir processing is one of the solid-state processes which can be used to modify the structure and properties of alloys. In addition, it has become one of the most promising techniques for the preparation of the surface layer composites. To pursue cost savings and a time-efficient design, the mathematical model and optimization of the process can represent a valid choice for engineers. Friction stir processing was employed to generate an Al 6061/Al2O3-TiB2 hybrid composite layer, and mechanical properties such as the hardness and wear behavior were also measured. The relationship between the hardness and wear behavior, process parameters of friction stir processing were evaluated using an artificial neural network and response surface methodology. The rotational speed (1500–1800 rpm), traverse speeds (25, 50, 100 mm/min), and the number of passes (1–4) with constant axial force (2.61 kN) were used as the input, while the hardness and weight loss values were the output. Experimentally, the results showed that the process parameters have significant effect on hardness and wear behavior of Al 6061/Al2O3-TiB2. In addition, the developed artificial neural network and response surface methodology models can be employed as alternative methods to compute the hardness and weight loss for given process parameters. The results of both models showed that the estimated values for the hardness and wear behavior of the processed zone had an error less than 0.60%, which indicated reliability, and an evaluation of the estimated values of both models and the experimental values confirmed that the artificial neural network is a better model than response surface methodology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3