Behavior of polyethylene under different triaxial stress states: An experimental and numerical study

Author:

Han Limei1,Zhang Yi12ORCID,Xue Shifeng1,Zhou Bo1,Liu Cuiwei3

Affiliation:

1. Department of Engineering Mechanics, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, China

2. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

3. Department of Oil & Gas Storage and Transportation Engineering, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, China

Abstract

The behavior of a semi-crystalline polymer under different triaxial stress states is studied through the combination of experimental testing and finite element simulation. Polyethylene round bar specimens with four different notch radii were stretched at crosshead speed of 1 mm/min until fracture. The continuum damage mechanics damage model and Gurson–Tvergaard–Needleman damage model were proposed and applied to the finite element simulation. The results of engineering stress–displacement curves determined from finite element simulation match experimental results. Finite element simulation without considering damage and with the consideration of damage was conducted to determine the damaged and undamaged true stress–strain relationship of polyethylene materials, respectively. Damage evolution model was established based on the degradation of true stress. The finite element model was further applied to study the distribution of stress triaxiality for specimens with different notch radii and the effect of stress triaxiality on damage evolution, critical damage parameters, and fracture strain. The results show that the distribution of the stress triaxiality on the cross section of the specimen is not uniform, and as the stress triaxiality increases, the position where the maximum stress triaxiality occurs moves from the center point to two-third the radius from the center. Furthermore, the damaged true stress and the undamaged true stress increases with the decrease of the stress triaxiality when the strain is below 0.3, but decreases with the increase of stress triaxiality when the strain is larger than 0.3. In addition, it was found that the greater the stress triaxiality, the earlier the onset of damage and the faster the evolution, but the smaller the fracture strain.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating ductile crack initiation in structural steel under combined tension and shear stress using a modified void growth model;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2022-12-20

2. On the estimation of tensile yield stress for polymer materials based on punch tests;Polymer Testing;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3