Exploring the flexural and impact properties of pure flax/epoxy and Kevlar/flax/epoxy composites through experimental and numerical analysis

Author:

Hadj-Djilani Abdelhadi12,Kioua Abderraouf1,Zitoune Redouane3,Toubal Lotfi1,Bougherara Habiba2ORCID

Affiliation:

1. Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada

2. Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON, Canada

3. Institut Clément Ader, UMR CNRS 5312, University of Toulouse, Toulouse, France

Abstract

Hybrid composites offer a viable alternative to conventional composites in terms of reduced cost and environmental impact. This study investigated the effect of hybridizing flax with Kevlar on the flexural and impact properties of Kevlar/flax/epoxy composites using three-point bending, drop-weight, and Charpy impact tests. The tested specimens were made of unidirectional flax fibers (F) and woven Kevlar fibers (K) in four configurations: unidirectional flax/epoxy [016F] (UFE), angle-ply flax/epoxy [±454F]S (AFE), woven Kevlar/unidirectional flax/epoxy [0–902K/06F]S (UKFE), and woven Kevlar/angle-ply flax/epoxy [0–902K/±453F]S (AKFE). The three-point bending test results showed that the ultimate strength and the flexural modulus of the UKFE increased by 15% compared to pure UFE and by more than threefold for AKFE compared to AFE laminates. Additionally, the results of the drop-weight test revealed a significant increase in the impact force by 30% for both unidirectional and angle-ply laminate configurations. Similarly, Charpy test results indicated a 60% improvement in the impact energies of the flax laminates. The predictions of the proposed finite element model agreed very well with the experimental results. These findings demonstrate the effectiveness of hybridizing two layers of Kevlar onto flax/epoxy composites in enhancing the composite's impact and flexural properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3