Novel U-bending designed setups for investigating the spring-back/spring-go of two-layer aluminum/copper sheets through experimental tests and finite element simulations

Author:

Etemadi Ehsan1ORCID,Naseri Abbas1,Valinezhad Mohsen1

Affiliation:

1. Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran

Abstract

This paper presents novel U-bending setups in order to investigate the effects of the curvatures created on the punch, die, or both on the spring-back/spring-go of the two-layer aluminum/copper sheets. Comparison of the new U-bending setups with the regular ones showed that the curvatures had important roles in reducing the spring-back/spring-go in the U-bending process. The results further indicated the good agreement between spring-back/spring-go and finite element simulations. Moreover, through finite element simulations, the effects of three effective parameters on reducing the spring-back/spring-go, including the curvature radius ( r) of the punch, the distance between curvature center and the fillet center ( d) in the punch, and the curvature radius at the end of the die ( R) were investigated. In achieving the desired state (90°), the results showed that the distance of curvature center from the fillet center ( d) was a more important parameter compared with the curvature radius at the end of the punch ( r) and the curvature radius at the end of the die ( R). This paper also focuses on the thicknesses of copper and aluminum as well as the stacking sequence of layers. Concerning the thicknesses of the implemented copper and aluminum change, the minimum angle of the spring-back/spring-go relative to the desired state was 75% Al/25% Cu thickness. Furthermore, the spring-back of aluminum/copper was lower than the copper/aluminum layer sheet. The effects of both thickness changing and stacking sequence of aluminum/copper layers on the spring-back/spring-go amounts of different sheets were due to the relocation of the neutral axis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3