Study on the effect of the welding environment on the dynamic recrystallization phenomenon and residual stresses during the friction stir welding process of aluminum alloy

Author:

Abbasi Mahmoud1,Abdollahzadeh Amin2,Bagheri Behrouz3,Ostovari Moghaddam Ahmad4,Sharifi Farzaneh5,Dadaei Mostafa6ORCID

Affiliation:

1. Faculty of Engineering, University of Kashan, Kashan, Iran

2. Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3. Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran

4. South Ural State University (National Research University), Chelyabinsk, Russia

5. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA

6. Chaharmahal Bakhtiari Automotive Sheet Company, Chaharmahal Bakhtiari, Iran

Abstract

Various methods have been proposed to modify the friction stir welding. Friction stir vibration welding and underwater friction stir welding are two variants of this technique. In friction stir vibration welding, the adjoining workpieces are vibrated normal to the joint line while friction stir welding is carried out, while in underwater friction stir welding the friction stir welding process is performed underwater. The effects of these modified versions of friction stir welding on the microstructure and mechanical characteristics of AA6061-T6 aluminum alloy welded joints are analyzed and compared with the joints fabricated by conventional friction stir welding. The results indicate that grain size decreases from about 57 μm for friction stir welding to around 34 μm for friction stir vibration welding and about 23 μm for underwater friction stir welding. The results also confirm the evolution of Mg2Si precipitates during all processes. Friction stir vibration welding and underwater friction stir welding processes can effectively decrease the size and interparticle distance of precipitates. The strength and ductility of underwater friction stir welding and friction stir vibration welding processed samples are higher than those of the friction stir welding processed sample, and the highest strength and ductility are obtained for underwater friction stir welding processed samples. The underwater friction stir welding and friction stir vibration welding processed samples exhibit about 25% and 10% higher tensile strength compared to the friction stir welding processed sample, respectively. The results also indicate that higher compressive residual stresses are developed as underwater friction stir welding and friction stir vibration welding are applied.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3