Overview of different strength prediction techniques for single-lap bonded joints

Author:

de Sousa CCRG1,Campilho RDSG12,Marques EAS3,Costa M2,da Silva LFM3

Affiliation:

1. Departamento de Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal

2. INEGI – Pólo FEUP, Porto, Portugal

3. Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Abstract

Adhesive joints have been used in several fields of engineering, and their applications are vast. Due to their easy and quick fabrication process, single-lap joints are a common configuration. The increase of strength, weight reduction and resistance to corrosion are some of the advantages of this kind of joint over traditional joining methods. However, stress concentrations at the overlap edges are one of the main disadvantages. There are very few accurate design techniques for the diversity of bonded joints that can be found in real applications, which constitutes an obstacle to the use of this bonding method in structural applications. This work aims at comparing different analytical and numerical methods in the strength prediction of single-lap joints with different overlap lengths ( LO). The main objective is to evaluate which predictive method is the best. Adhesive joints were produced between aluminium adherends using a brittle epoxy adhesive (Araldite® AV138), a moderately ductile epoxy adhesive (Araldite® 2015) and a ductile polyurethane adhesive (Sikaforce® 7888). Different analytical methods were considered, together with two numerical techniques: cohesive zone models (CZM) and the extended finite element method (XFEM), allowing the comparative analysis. The analytical methods showed that they only give relatively accurate results in very specific conditions. The CZM analysis with the triangular law revealed to be a very accurate method, with the exception of joints with very ductile adhesives. On the other hand, the XFEM analysis was not adequate, especially for crack growth in mixed mode.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3