Affiliation:
1. Adhesively Bonded and Sandwich Structures Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
Epoxy resin as a thermoset polymer is vulnerable to creep loading even at room temperature due to its viscoelastic nature. This study investigated the effect of reinforcing epoxy resin with different functionalized multi-walled carbon nanotubes (MWCNT) contents on the creep response and post-creep residual tensile properties of nanocomposites. The creep tests were performed on the nanocomposite specimens containing different filler contents and the neat epoxy specimen at 40°C under a constant load level of 200 N. It was found that the nanocomposites containing 0.3 wt% MWCNTs experienced 29.6%, 69.1%, and 74.1% decreases in the elastic strain, creep strain, and steady-state creep strain rate, respectively, compared to the neat epoxy. Furthermore, the tensile strength and stiffness of the neat epoxy and nanocomposite specimens were evaluated before and after a partial creep test (at a load level of 200 N for 150 min) by conducting tensile tests. The nanocomposites containing 0.3 wt% MWCNTs demonstrated considerable improvements of 35.9%, 41.2%, 27.9%, and 28.1% in strength, residual strength, stiffness, and residual stiffness, respectively, compared to the neat epoxy. Furthermore, scanning electron microscopy assessment was utilized to investigate the fracture surfaces of the nanocomposite specimens.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献