Adhesive joining of sisal/jute/hybrid composites with drilled holes in lap area

Author:

Melese Kassahun Gashu1ORCID,Naik Tejas P1,Singh Inderdeep1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Abstract

Growing awareness about sustainable development and the environmental problems involved in using nonbiodegradable materials has motivated the research community to develop environment-friendly materials. Developments have been achieved in the field of natural fibers and biopolymers, still there remain unanswered questions regarding the high-quality cost-effective manufacturing of natural fiber reinforced composites. The natural fiber-based polymeric composites are being used extensively in engineering applications, especially in the nonstructural parts and components. Near-net processing techniques such as compression molding, extrusion, and injection molding are well-developed for natural fiber reinforced composites. However, secondary processes such as joining, machining, and surface modification are still unexplored and need to be investigated in detail. The present research endeavor is an attempt to experimentally investigate the adhesive joining behavior of jute/sisal reinforced epoxy composites. The laminates based on three different material configurations in woven mat form, namely, pure jute, pure sisal, and hybrid jute/sisal reinforced epoxy have been fabricated by hand layup process. Different lap joint configurations with through holes in adherends overlapping area have been investigated. It has been established experimentally that the holes in the adherends provide a hinge-effect in the overlapping area and help in defining the failure load of the composite joint. The different arrangement of holes has been investigated and the best design of hole arrangement has been proposed for adhesive joining of jute/sisal fiber reinforced epoxy laminates. It was found that the holes (filled with an epoxy adhesive) in the overlap area result in 6–18% improvement in the failure load for different materials as compared to the joints with only adhesive bonding. Moreover, the field-emission scanning electron microscopy micrographs have been used to understand the failure mechanism of the adhesively bonded natural fiber reinforced composite laminates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3