Performance of polyvinyl chloride-based E-glass reinforced isophthalic and orthophthalic polyester sandwich composites: A comparative study

Author:

Ojha Somanath12,Bisaria Himanshu1ORCID,Mohanty Smita1,Kanny Krishnan2

Affiliation:

1. Laboratory for Advanced Research in Polymeric Materials-Central Institute of Petrochemicals Engineering and Technology, Bhubaneswar, Odisha, India

2. Department of Mechanical Engineering, Durban University of Technology - Steve Biko Campus, Durban, Kwazulu-Natal, South Africa

Abstract

This study investigates the performance of sandwich composites composed of polyvinyl chloride cores reinforced with E-glass fibers and bonded with isophthalic and orthophthalic polyester skins. The aim is to comparatively assess the mechanical and morphological characteristics of these composite structures. The comparative analysis also included variations in the skin thickness of the sandwich composite. Mechanical tests such as compressive, impact, and hardness were carried out. Moreover, fracture tests specifically focusing on single-edge notched beam fracture (mode I) were conducted under different temperature conditions, low (−10 °C), ambient (25 °C), and high (100 °C) temperatures. Comparative analysis of the mechanical properties indicated that the isophthalic-based sandwich composites exhibited superior mechanical characteristics when compared to their orthophthalic counterparts. Fracture properties of both types of sandwich composites demonstrated higher values at lower temperatures, followed by room temperature, and then high temperatures. In both types of sandwich composites, using two layers of E-glass on both sides of the polyvinyl chloride foam resulted in superior properties. This improvement can be attributed to the increased skin thickness. The interfacial properties were identified using Fourier transform infrared spectroscopy and scanning electron microscopy, revealing distinct spectroscopic features such as CH-stretching, C–O–C, CH bend, CN stretching, and NH stretching. Examination of the fractured surfaces through scanning electron microscopy revealed distinct features such as crushed fiber, fiber pull-out, honeycomb, riverline patterns, matrix-fiber delamination, and debonding, providing valuable insights into the composite's structural integrity.

Funder

Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilizers, India

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3