Preparation and characterization of highly porous ceramic-based nanocomposite scaffolds with improved mechanical properties using the liquid phase-assisted sintering method

Author:

Kazemi Mansure1,Nazari Bahareh2,Ai Jafar1,Lotfibakhshaiesh Nasrin1,Samadikuchaksaraei Ali34,Tavangar Seyed Mohammad1,Azami Mahmoud1ORCID

Affiliation:

1. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2. Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

3. Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

4. Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Recent advances in the field of biomaterials have led to the development of ceramic–matrix nanocomposites with enhanced mechanical properties, which is essential for hard tissue scaffolds. In this study, the improvement in mechanical and biological properties of β-tricalcium phosphate reinforced with 45S5 bioactive glass under different sintering conditions was studied. In order to improve the thermal stability and biological responses, β-tricalcium phosphate was doped with 5 mol% strontium ions. Highly porous nanocomposites, with different weight ratios of Sr-tricalcium phosphate/bioactive glass (75/25, 50/50, 25/75), were fabricated through the foam replication method by sintering samples under various thermal conditions (1200–1250 ℃/0–1 h). The effects of bioactive glass content and sintering parameters on microstructure and mechanical behaviors of the nanocomposites were assessed. The obtained results showed that increasing 45S5 bioactive glass content, sintering temperature, and dwelling time gradually improved the mechanical properties of final products which were ascribed to the improved ceramic densification. The composites with the optimal compressive strength were selected to apply in further characterization and cell culture experiments. The selected scaffolds showed excellent bioactivity since a continuous layer of minerals covered the entire surface of composites after immersion in simulated body fluid solution for two weeks. Moreover, the cell culture studies demonstrated that the composite scaffolds could well support the attachment and proliferation of MG-63 osteoblast-like cells. This investigation clearly concluded that the appropriate incorporation of 45S5 bioactive glass into the β-tricalcium phosphate matrix can effectively promote the mechanical behavior, bioactivity, and biocompatibility of the resultant composite scaffolds.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3