Enhancing Mode-I and Mode-II fracture toughness of carbon fiber/epoxy laminated composites using 3D-printed polyamide interlayers

Author:

Beylergil Bertan1ORCID,Duman Volkan2

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, Alanya Alaaddin Keykubat University, Alanya, Turkey

2. Faculty of Engineering, Department of Metallurgy and Material Engineering, Alanya Alaaddin Keykubat University, Alanya, Turkey

Abstract

Delamination is a critical concern in laminated composites, affecting their structural integrity and overall performance. This study investigates the enhancement of Mode-I and Mode-II fracture toughness in carbon fiber/epoxy (CF/EP) composites through the incorporation of 3D-printed polyamide (PA) interlayers. Vacuum-assisted resin transfer molding was utilized to fabricate composite laminates with and without 3D-printed PA interlayers. Comprehensive testing was conducted to assess the effect of 3D-printed PA interlayers on the Mode-I and Mode-II fracture toughness, interlaminar shear strength, and flexural properties, as well as thermomechanical response using dynamic mechanical analysis. The results revealed a significant improvement in critical energy release rates for both Mode-I and Mode-II (GIc and GIIc), increasing by 43.5% and 81.2% respectively, compared to the reference composites. This enhancement was primarily attributed to crack bridging and plastic deformation of PA filaments in the interlaminar region. Additionally, interlaminar shear strength increased by 17.4%. While the reference composites had a glass transition temperature of 117.3 °C, the PA-reinforced composites showed a slightly higher value at 119.6 °C, with no significant change in the glass transition temperature. tanδmax values increased from 0.321 to 0.576, suggesting better energy dissipation in PA-reinforced composites. However, flexural properties were adversely affected by the increased thickness and reduced fiber volume fraction due to the introduction of 3D-printed PA interlayers, with the flexural modulus decreasing by approximately 28% and the flexural strength by around 50%. These findings offer promising opportunities to enhance the performance of CF/EP composites under specific loading scenarios, thus expanding their potential applications across diverse industries.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3