A review on the fused deposition modelling of fibre-reinforced polymer composites: Influence of process parameters, pre-processing and post processing techniques

Author:

Naveen Kumar C1ORCID,Venkatesan Subramani1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

Additive manufacturing is one of the latest manufacturing techniques that has gained universal recognition due to its material conservation nature. Fused deposition modelling (FDM) is an additive manufacturing technique that employs material extrusion to build components layer by layer. Thermoplastic polymers are used in FDM, and the components created are anisotropic and porous. Composite materials are used to improve the quality of the components. This article reviews recent research focused on the enhancement of the mechanical performance of composites produced by FDM. The influence of process parameters, type of fibre reinforcement (short and continuous fibres), pre-processing, process modification and post-processing techniques is analysed. Short fibres improved the mechanical performance of components, irrespective of the polymer matrix. Short fibres offered dimensional stability to the components, besides improving mechanical performance. Continuous fibres produce components with superior mechanical properties than short fibre composites. Continuous fibre reinforcement is the most effective reinforcement for fabricating structural and functional components in FDM. The importance of pre-processing, process modification and post-processing techniques in improving the mechanical characteristics of the components is discussed. In addition, this review identifies the significant challenges and perspectives for the future development of FDM technology in fibre-reinforced composites.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3