Shielding performance of T-shaped periodic barrier for surface waves in transversely isotropic soil

Author:

Ji De-Xin1,Yu Gui-Lan1ORCID

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing, China

Abstract

Aiming at the vibration isolation in transversely isotropic soil, a T-shaped partially embedded periodic barrier for surface waves is proposed, and its shielding performance is explored by using finite element method combined with Bloch-Floquet theory. Seven independent dimensionless material parameters are derived and their influences on band gaps are discussed numerically. The results show that the band gaps exhibit strong sensitivity to the three parameters out of seven, and the band gaps are far wider in transversely isotropic soils than that in the isotropic. The mass density ratio and the shear modulus ratio of the barrier to the soil, as well as the length ratio of the barrier above the ground to that below, can be used to adjust band gaps effectively to meet the shielding requirements for different frequency ranges under different anisotropic soils. As a case of study, the El Centro seismic wave is considered and found that it can be considerably attenuated by the designed periodic barrier.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-aided topology design of metasurfaces for Rayleigh waves;Journal of Computational Design and Engineering;2024-04-17

2. Burr Puzzle-Inspired Seismic Metamaterials;International Journal of Structural Stability and Dynamics;2023-09-28

3. Gradient V-Shaped and N-Shaped Seismic Metamaterials;Materials;2023-04-13

4. A snowman-like seismic metamaterial;Journal of Applied Physics;2022-09-14

5. Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset;Computer Methods in Applied Mechanics and Engineering;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3