Three-dimensional dynamic finite element and experimental models for drilling processes

Author:

Fernandes Maria G1,Fonseca Elza M2,Natal Renato M3

Affiliation:

1. INEGI, Faculty of Engineering of University of Porto, Portugal

2. LAETA-INEGI/UMNMEE, Department of Applied Mechanics, Polytechnic Institute of Bragança, Portugal

3. LAETA-INEGI, Department of Mechanical Engineering, Faculty of Engineering of University of Porto, Portugal

Abstract

The main goal of this paper is to assess the mechanical damage in solid rigid foam materials with similar mechanical properties to the human bone induced by the cutting parameters. In the present study, a three-dimensional dynamic finite element model was developed to simulate the drilling process in solid rigid foam materials and it was validated with experimental results. Using an explicit dynamic numerical simulation, it is possible to obtain large structural deformation with high load intensity in short time frame. The developed model is used to study the effects of different high intensity loads distribution in the solid rigid foam materials. Laboratory tests were produced using biomechanical test blocks instrumented with strain gauges in different surface positions during the drilling process. The comparison between the numerical and the experimental results enables the evaluation and improvements of the cutting process. It was concluded when the feed-rate is higher, the stresses and strains in the solid rigid foam material are lower. The developed numerical model proved to be a great tool in this kind of analysis and available to use in forthcoming tests.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3