Parametric investigation and characterization on SS316 built by laser-assisted directed energy deposition

Author:

Benarji K1ORCID,Kumar Y Ravi1,Paul CP23ORCID,Jinoop AN23ORCID,Bindra KS23

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal, India

2. Laser Technology Division, Raja Ramanna Centre for Advanced Technology, Indore, India

3. Homi Bhabha National Institute, Mumbai, India

Abstract

In the present work, parametric investigation and characterization of stainless steel 316 (SS316) built by laser-assisted directed energy deposition (L-DED) is performed. Single-track L-DED experiments are carried by varying laser power, scanning speed, and powder feed rate using full factorial experimental design. The effect of L-DED process parameters on the track geometry, deposition rate, and microhardness is investigated, and three different combinations of process parameters yielding maximum deposition rate and hardness are identified for bulk investigation. The identified process parameters are laser power of 1000 W, powder feed rate of 8 g/min, and scanning speed of 0.4 m/min, 0.5 m/min, and 0.6 m/min. The austenitic phase [Formula: see text] is detected at all the conditions. However, ferrite [Formula: see text] peak is observed at 0.6 m/min due to microsegregation and thermal gradients. The minimum crystallite size is estimated to be 24.88 nm at 0.6 m/min. The porosity and microstructure analysis is carried out by optical microscopic images. The fine columnar dendritic structure is observed in L-DED samples at all conditions. An average microhardness of 317.4 HV0.98 N is obtained at 0.4 m/min, and it is observed that microhardness reduces with an increase in scanning speed mainly due to increase in lack of fusion and porosity. Tribology studies are carried out at different values of normal load and sliding velocity. The minimum specific wear rate of 0.02497 × 10−4 mm3/Nm is observed at scanning speed of 0.4 m/min. Scanning electron microscope of the wear tracks analysis shows abrasive wear as the major wear mechanism. This study provides a path for building SS316 components for various engineering applications.

Funder

Ministry of Human Resource Development

Department of Atomic Energy, Government of India

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3