Improved elastomeric seal design based on nonhomogeneous material properties

Author:

Matus Daniel A1,Klamecki Barney E1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota – Twin Cities, USA

Abstract

The goal of this research was improving elastomeric seal performance based on seal material design. The specific seal failure mode considered was permanent deformation or compression set of O-rings, and sealing performance degradation due to this process is common to all types of elastomeric seals. The basis for seal design was identified as reducing the elastic strain energy in the seal since it drives the growth of permanent material deformation. The design concept developed was using variation of material behavior over the seal section to manipulate the level and distribution of elastic strain energy. Design studies used finite element analyses with experimentally measured material behavior to quantify effects of varying seal material characteristic on seal performance. Sealing performance was described in terms of compression set and seal-counterface contact pressure. Experimental O-rings were produced based on designs that included regions of less stiff material in the larger surrounding seal section. Performance of new design seals was compared to conventional one-material seals and improved sealing performance was demonstrated. With the modified design seals, both compression set and the rate of sealing contact pressure loss over time were decreased. There was a loss of initial maximum contact pressure with the inclusion of less stiff material regions, but it was shown that this effect can be mitigated by properly locating the softer material in the overall seal section. In summary, properly implemented material variations over the seal will result in lower strain energy content, lower rate of permanent deformation development and decreasing rate of loss of seal-counterface contact pressure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3