Experimental study on rotary ultrasonic machining of alumina ceramic: Microstructure analysis and multi-response optimization

Author:

Singh Ravi Pratap1,Singhal Sandeep1

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India

Abstract

Excellent and superior properties of alumina ceramic make it a one of the highly demanded advanced ceramics in the present competitive scenario of manufacturing and industrial applications. However, its effective and economic processing is still a challenge. The present article has targeted to experimentally investigate the influence of several process variables, namely spindle speed, feed rate, coolant pressure, and ultrasonic power on different machining performances, i.e. surface roughness, and chipping thickness. Response surface methodology has been employed to design the experiments. Microstructure of the machined samples has been evaluated and analyzed through scanning electron microscope. This analysis has revealed and confirmed the presence of plastic deformation of work surface that caused the material removal along with the dominated brittle fracture in the processing of alumina ceramic with rotary ultrasonic machining. The multi-response optimization of machining responses has been done by using desirability approach. At the optimized parametric setting, the obtained experimental values for surface roughness and chipping thickness are found to be 0.215 µm and 0.159 mm, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3