Study of the in-plane crashworthiness performance of 6-legged starfish-inspired structures

Author:

Doan ThanhSon1ORCID,Nguyen ThaiVan2,Lương VanVan3,Pham HoangTu1,Dang QuocCuong4ORCID,Le HuuSon1,Tran TrongNhan5ORCID

Affiliation:

1. Faculty of Automotive Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

2. Department of Scientific Management and International Cooperation, Vinh Long University of Technology Education, Vĩnh Long, Vietnam

3. Faculty of Automobile Engineering Technology, Vinh Long University of Technology Education, Vĩnh Long, Vietnam

4. Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

5. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh, Ho Chi Minh City, Vietnam

Abstract

Bio-inspired design is an impressive design method that improves a structure's crashworthiness performance and mechanical features. A cellular structure bio-inspired by a 6-legged starfish shape has been developed. Accordingly, this study examines the in-plane crushing behavior and crashworthiness of the 6-legged starfish-inspired structure (6LSIS). Analytical solutions were built based on the principle of energy balance to estimate the plateau stress in low-impact velocity conditions. Plateau stresses are related to high-impact velocities using a curve fitting method for a given wall's thickness. The predictions matched the numerical results. The crashworthiness performance of the 6LSISs mainly depends on wall thickness, impact velocity, and loading direction. It has been observed that an increase in wall thickness and impact velocity results in an enhancement in plateau stress ( σpl), specific energy absorption (SEA), and peak load (PL) in both directions. However, if the wall thickness is >0.3 mm, SEA decreases due to an increase in the structure's mass. The in-plane crushing direction ( X or Y) determines the crushing strength and deformation mode of the structure. This study illustrates that the crashworthiness of the structure in the X-direction is superior to that in the Y-direction.

Funder

Van Lang univeristy

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3