Affiliation:
1. Laboratory of Vibrations—LabVib, Federal University of Ceará, Fortaleza, Brazil
2. Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University, Praha, Czech Republic
3. Thermal and Fluid Laboratory—LTF, Federal University of Ceará, Fortaleza, Brazil
Abstract
Brakes play a vital role in vehicles, converting kinetic energy into heat and vibration. Brake squeal, an uncomfortable noise phenomenon, has been thoroughly researched in both drum and disc brakes. Many studies have explored how factors such as material, temperature, and operations impact brake instability and noise. Yet, commercial drum brake linings often contain hazardous asbestos. This poses health risks, exposing individuals to harmful airborne particles, particularly affecting lung health. Hence, current research aims to develop asbestos-free alternative linings, prioritizing reduced wear rates while maintaining effectiveness comparable to traditional ones. These alternatives primarily use organic materials for reinforcement. However, few studies have evaluated the performance of these biomaterial-based linings against commercial counterparts. This study aims to bridge this gap by analyzing a rear-axle drum brake from a heavy vehicle, comparing two linings: One commercially available and the other specially made with coconut shell reinforcement, in a finite element software. Five similar simulation stages were set for both linings in the ANSYS software. Each stage comprises transient thermal and static simulations. The input parameters were chosen to simulate a real braking situation, and the resulting pre-stress state was used to conduct complex modal analysis, which extracted the eigenvalues and values responsible for stability. The results proved that biomaterials such as coconut shells can be used for industrial purposes, such as the manufacture of a brake pad or lining, creating a cheaper, less polluting, and less brake squeal-inducing material.