Simulation and experiment analysis of relationship between voids and permeability of composites

Author:

Guan Chenglong1ORCID,Zhan Lihua12,Shi Hanqiao3,Dai Guangming1,Xiao Yu2

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China

2. Light Alloys Research Institute, Central South University, Changsha, Hunan, China

3. Aerospace Research Institute of Materials and Processing Technology, Beijing, China

Abstract

Due to the significant weight reduction advantage, aerospace composite tanks have become the focus of international competition of spacecraft. However, the permeation of small molecules at low temperature caused by the internal voids of composites is one of the key technical problems which restrict the engineering application of composite tanks. In this study, a combination of theoretical research and experimental research was adopted. By changing the curing pressures of the composites’ autoclave process, laminates with different porosities were prepared and tested for low-temperature permeability. Based on the grayscale processing and median filtering methods, a permeability prediction model with the true voids morphology of composite materials was established. Based on the random medium theory, the random voids model of composites was built to study the effect of void size and shape on the permeability of laminates. The results showed that the finite element analysis of composites, permeability based on the real voids morphology model was in good agreement with the experimental results, which proved the feasibility of this method. The permeation rate of laminates increased with the raised of porosity, and the internal porosity of the laminates could be diminished by improving the curing pressure so as to reduce the permeation of the composite components. Under the condition of a certain porosity, the laminates with small, stripe voids had a higher permeation rate than the laminates with large, circular voids.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3