Improving the fracture toughness of glass/epoxy laminates through intra-yarns hybridisation

Author:

Dalfi Hussein1ORCID,Potluri P2,Jan Khayale3,Selver Erdem4

Affiliation:

1. Mechanical Department, University of Wasit, Wasit, Iraq

2. The University of Manchester, Manchester, UK

3. Faculty of Engineering, Bahauddin Zakariya University, Multan, Pakistan

4. Department of Textile Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey

Abstract

Glass fibre reinforced composite laminates have shown poor interlaminar fracture toughness which makes them vulnerable to impact damages; hence, it is essential to improve their fracture toughness and understand the mechanisms of impact energy dissipation. In this study, polypropylene (PP) fibres are mixed with glass fibres at yarn-level hybridisation to enhance the interlaminar fracture toughness of glass/epoxy composite laminates. Composite laminates containing S-glass and hybrid yarns (S-glass and PP) have been manufactured with non-crimp cross-ply preforms using vacuum bagging process. The fracture resistance of laminates with S-glass fibres and hybrid yarns laminates have been evaluated using double cantilever beam (DCB) and end notch flexural (ENF) tests. In addition, the fracture surface analysis was conducted using Scanning Electronic Microscope (SEM). It has been noticed that the yarn-level hybridisation considerably enhanced the mode-I (DCB) and mode-II (ENF) fracture toughness of hybrid laminates compared to that of baseline samples. SEM micrographs of fracture surface illustrated that PP fibre/epoxy de-bonding followed by pull-out of fibre and bridging of fibre has been the effective mechanisms of toughening the hybrid laminates resulting into higher fracture resistance. The results demonstrated that the hybridisation of glass fibres with polypropylene fibres could potentially improve the delamination resistance with the improvement of impact damage tolerance of glass/epoxy laminates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3