Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing

Author:

Akbari Mostafa1,Shojaeefard Mohammad Hasan2,Asadi Parviz3,Khalkhali Abolfazl1

Affiliation:

1. School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

2. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

3. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

Aluminum-base surface hybrid composites have been fabricated by mixtures of SiO2 and Al2O3 particles on an Al–Si cast aluminum alloy using friction stir processing with the aim of achieving higher wear properties in the Al piston alloy via surface hybrid composites fabrication. The distribution of particles in the stir zone was evaluated via scanning electron microscope. Microstructures of the composites revealed that the reinforcing particles were uniformly distributed in the stir zone. Furthermore, the mechanical properties of each composite were determined using hardness tests indicating that increase in the relative content of SiO2 resulting in a decrease in the average hardness of the stir zone. Additionally, the wear resistance of the surface hybrid composites was investigated under normal load, sliding speed, and distances of 20 N, 1 m/s, and 4000 m, respectively. It was found that the wear mass loss of the 20% SiO2–80% Al2O3 hybrid composites (which was about 4.2 mg) was improved when compared with that of the A356 base alloy (nearly 19 mg). Moreover, by increasing the relative content of SiO2 particles from 0% to 100% in the hybrid composites, the friction coefficient of the composites rose from 0.55 to 0.73. It can be concluded by adding Al2O3 and SiO2 particles in the Al matrix, wear mass loss can be decreased by about five times compared with that of the base metal, in which the Al2O3 particle increases the hardness and SiO2 particles acts as lubricating agent, and the combination of these leads to better wear properties. The best combination of the hybrid particles in order to achieve the best wear properties for the hybrid composites is 20% Al2O3 and 80% SiO2.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3