Affiliation:
1. Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
2. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
The demand for new methods to reduce CO2 emission by reusing metal scrap has increased recently. This study deals with a new recycling technique utilizing a friction stir consolidation process. In this work, copper was directly recycled from machining chips in the solid-state form without any remelting to reduce environmental pollution and to increase the economic value of the waste material. During the process, copper chips were loaded into the chamber; then, a rotating tool was plunged into the chips at a specified rotational speed and feed rate. Due to the huge amount of heat generated, the softened material was compressed and synthesized to form a consolidated part. Microstructure, mechanical properties, and electrical conductivity of the finished samples were evaluated and compared with as-received material. Also, a numerical model was implemented to predict the evolution of the main field variables, including temperature, density, and strain.
Subject
Mechanical Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献