Additive manufacturing of polyethylene terephthalate glycol /carbon fiber composites: An experimental study from filament to printed parts

Author:

Ferreira Isaac1ORCID,Vale Diogo2,Machado Margarida2,Lino Jorge1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

2. INEGI, Porto, Portugal

Abstract

This research focuses on the definition and application of a characterization methodology to determine the characteristics of fused deposition modeling 3D printing materials. Commercial short fiber reinforced and unreinforced polyethylene terephthalate glycol parts were tested achieving comparison terms. The presented methodology is composed of three classes: thermal analysis, mechanical testing, and material morphology. Filament was tensile tested with specially developed setup for determining the mechanical properties of raw materials. Standardized flexural and tensile samples were printed 100% dense in both materials and tested. Differential scanning calorimetry results showed that the thermal properties of both materials do not change with successive heating cycles. Thermogravimetric analysis allowed to understand the thermal stability of materials and quantify the amount of fiber in the matrix. Tensile tests indicated that the addition of fibers increases the Young’s modulus by 70.10% but there is lesser withstanding of stress by 28.21%. Flexural tests exhibited an increase in flexural modulus of 191.38% and 5.14% in flexural strength for the reinforced polyethylene terephthalate glycol, due to the presence of fiber. Microscopic analysis revealed a 12% of void spots and fiber alignment accordingly to the deposition path.

Funder

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3