Joining of hybrid semi-finished products from sheet metal by orbital forming

Author:

Hetzel Andreas1ORCID,Lechner Michael1,Merklein Marion1

Affiliation:

1. Institute of Manufacturing Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

Contrary demands like a reduction of carbon dioxide emissions and an increase in functionality are facing the manufacturing industry with growing challenges. When processing functional components, like synchronizer rings, conventional process chains, like shearing and subsequent joining, are reaching their limits due to an increased complexity of the components and a lack in efficiency, referring to the long process time. To meet these challenges, the strategy of lightweight construction combines the application of lightweight materials with efficient manufacturing processes and an innovative product design. One possibility within lightweight construction is the utilization of load-adapted hybrid components, featuring different material strength classes. In previous research, the process of orbital forming is used to manufacture semi-finished products with a varying thickness profile due to the specific radial material flow. This material flow should now be used to realize a permanent joint between materials of two different strength levels. Therefore, the process of orbital forming is modified to manufacture hybrid semi-finished products from a dual-phase steel DP600 and a naturally rigid aluminum alloy EN AW 5754, both with an initial thickness of 2.0 mm. Different joint geometries are cut by laser into a steel ring and the part is coaxially positioned around a basic aluminum disc inside a die and subsequently formed. The joint is investigated regarding the geometrical and mechanical properties, comparing a radial cross-section and the micro hardness distribution. In order to reveal the potential of orbital forming for a combined forming and joining operation, the axial as well as the peeling strength of the multi-material components are investigated and evaluated.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3