Experimental and numerical investigation of the bending fatigue performance of symmetric and asymmetric polymer gears

Author:

Karthik Pandian A1ORCID,Gautam Sachin Singh1,Senthilvelan S1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India

Abstract

In this work, the bending fatigue strengths of injection-molded symmetric and asymmetric nylon 66 gears were evaluated experimentally, and the results were substantiated using numerical studies. The symmetric (20°/20°) and asymmetric (34°/20° and 20°/34°) configurations were subjected to bending fatigue tests under a load controlled mode. The bending stresses of the symmetric and asymmetric gears were predicted by quasi-static simulations using a commercial finite element analysis software. The form factor ([Formula: see text]) and the stress correction factor ([Formula: see text]) were computed using an adapted ISO method. The 34°/20° configuration exhibited the lowest bending stress and highest bending fatigue life among the tested configurations. The form factor exerted a decisive influence on the magnitude of the bending stress compared to the stress correction factor. For the considered loading conditions, deflection-induced load sharing occurred in the 20°/20° and 20°/34° configurations but was absent in the 34°/20° configuration. Failure analysis indicated that a high stress concentration caused multiple cracks in the fillets of asymmetric gears.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3