Mechanical and tribological properties of carbon nanotube reinforced polypropylene composites

Author:

Mertens A Johnney1,Senthilvelan S1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Abstract

In this work, carbon nanotube (CNT) reinforced polypropylene (PP) composites (0.5, 1.0, 3.0, and 5.0 wt%) were developed using the melt compounding process. The developed composites were injection-molded into tensile specimens and pins to evaluate the mechanical and tribological properties of the composites. As the CNT content increased, the tensile strength and Young’s modulus of the PP composites increased. The addition of the CNTs to the PP matrix beyond 1 wt% demonstrated agglomeration, and fractured tensile specimens confirmed this behavior. Developed materials demonstrated enhanced crystallinity up to 1 wt% CNT and, subsequently, decreased crystallinity beyond 1 wt% CNT, and an X-ray diffraction investigation confirmed this behavior. The measured coefficient of friction, online wear, and weight loss from the sliding wear test confirmed the least frictional resistance and maximum wear resistance for the 1 wt% CNT–PP composite. As the CNT content increased, the hardness of the CNT–PP composite increased up to 1 wt% CNT and decreased beyond this threshold. The worn-out surfaces of the CNT–PP composite observed using a scanning electron microscope and noncontact three-dimensional profiler confirmed the superior wear resistance of the 1 wt% CNT–PP composite. The CNT–PP composites considered in this study exhibited increased surface temperatures in the sliding wear condition because of the addition of the CNTs. The addition of the CNTs to the PP material increased the thermal conductivity of the composite.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3