Effect of microstructure and precipitate formation on mechanical and corrosion behavior of friction stir processed AA6061 alloy using different cooling media

Author:

Satyanarayana Marukurti VNV1ORCID,Kumar Adepu1,Thapliyal Shivraman1

Affiliation:

1. Mechanical Engineering Division, National Institute of Technology Warangal, Warangal, India

Abstract

The present work studies the effect of microstructure and precipitate formation on mechanical and corrosion characteristics of friction stir processed AA6061 alloy using different cooling technologies (cryogenic and water cooling). The results revealed that recrystallized fine grains formed in all friction stir processing samples (grain size within a range of 2–6 µm) as a result of dynamic recovery and recrystallization, while samples processed in cooling-assisted friction stir processing resulted in better grain refinement in the stir zone than in air-cooled friction stir processing. Three kinds of precipitates (Fe-based needle-shaped precipitates, Si-based round-shaped precipitates, and chain of small round-shaped Si-based precipitates) were identified in base material and friction stir processing samples. Compared to air-cooled friction stir processing, in cooling-assisted friction stir processing, the hardness and tensile strength increased but remained lower than for the base alloy due to the presence of high density Fe-based needle-shaped precipitates. The ductility after friction stir processing greatly improved due to thermal softening and dissolution of precipitates. The corrosion results demonstrated that the corrosion resistance greatly enhanced after friction stir processing due to uniform distribution of grain structure and discontinuous chain of small round-shaped Si-based precipitates in stir zone. Moreover, cooling-assisted friction stir processing resulted in improved corrosion resistance compared to air-cooled friction stir processing due to the formation of fine precipitates.

Funder

Aeronautics Research and Development Board

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3