Textile-reinforced mortars; an experimental comparative study of tensile strength improvement methods

Author:

Ghasemi Roohallah1,Safarabadi Majid1ORCID,Haghighi-Yazdi Mojtaba1,Mirdehghan Abolfazl2

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

In this article, an experimental study is conducted to compare eight improvement methods for the tensile strength of textile-reinforced mortars (TRM). 12 series of samples with different modification methods are compared to determine the most effective factors on crack initiation force and tensile strength of TRM. Eight modification methods are categorized under three main groups of mortar modification, fabric modification, and fabric-mortar interface modification. TRM's first crack force and ultimate force are considered as indices of method performance. One-way ANOVA and factorial analysis were also conducted to statically determine the most significant methods for improving TRM tensile behavior. The results showed that the modification of mortar by short fiber is the most effective method for the enhancement of TRM's first crack force. Also, the methods which led to the transfer of failure mode from mortar to fabrics were the most effective methods on TRM ultimate force improvement. The result showed that coating fabrics with epoxy affects TRM tensile strength more than all other methods. Extra enhancement of TRM ultimate force is achieved by adding silica fume to epoxy before coating the fabrics and spreading the sand and short fibers on impregnated fabrics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromechanical modeling and experimental study of the flexural properties of impregnated woven textile-reinforced concrete;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-02-26

2. Experimental and analytical study of flexural creep of impregnated woven fabric-reinforced concrete;Composite Structures;2023-10

3. Waste granite powders as fillers in epoxy coatings: A case study in a car repair workshop;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-10-01

4. A state-of-the-art review on mechanical performance characterization and modelling of high-performance textile reinforced concretes;Construction and Building Materials;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3