Fretting fatigue crack initiation and propagation in Ti6Al4V sheets under tribocorrosive conditions of artificial seawater and physiological solutions

Author:

Anjum Zeeshan12,Shah Masood13,Elahi Hassan4ORCID,Khan Mushtaq5,Mujahid Mohammad6,Khushnood Shahab1,Qayyum Faisal7

Affiliation:

1. Department of Mechanical Engineering, University of Engineering and Technology Taxila, Pakistan

2. Department of Mechanical Engineering, Mirpur University of Science and Technology, Mirpur, Pakistan

3. INSA, UPS, Mines Albi, ISAE, Institut Clément Ader (ICA), Université de Toulouse, France

4. Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy

5. School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan

6. School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan

7. Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Germany

Abstract

The interaction of mechanical components experiencing relative movements and cyclic loads in a corrosive environment is known as fretting corrosion or tribocorrosion. In the current work, the mechanism of crack initiation and propagation in dovetail slots of Ti6Al4V samples (in contact with carbide rods) under fretting corrosion conditions was investigated. A newly developed test rig installed on a universal testing machine was used to conduct tests at 20 Hz frequency under 5 and 7.5 kN fretting loads. Tests were conducted at room temperature in 3.5% NaCl and phosphate-buffered saline solutions. Crack propagation in all samples was examined by a metallurgical microscope, and the detailed analysis of fractured samples was carried out by a scanning electron microscope. In comparison to dry conditions, early crack initiation and faster crack propagation were observed in salt and physiological solution environments. Colored spots and large amounts of chlorine, sodium, and oxygen were found around cracks, and plastically deformed regions in the 3.5% NaCl environment provided the evidence of a corrosive attack. Large amounts of oxygen, phosphorous, chlorine, potassium, and sodium were detected in the phosphate-buffered saline environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3