Affiliation:
1. R&D, Emsa Nano Technology Energy Ind. Co. Inc., Bursa, Turkey
Abstract
This study aims to determine the ballistic performances of laminated composite plates produced with AA5083-H112 series aluminum and rubber material with high elongation capacity under impact loading. To investigate the effect of rubber compounds, two types of rubber with calendered and damping were prepared. Thanks to the surface treatment applied to the aluminum plates, the rubber–metal adhesion strength was adjusted, and four different laminated composite plate samples were prepared. Calendered rubber was used on the bullet impact surface of all samples, and damping rubber was used on the back. It has been observed that the pressure barrier created by the calendered rubber bullet on the front face provides high performance to absorb energy. A detailed study was carried out on the total thickness of laminated composite plates, the interface adhesion strength between rubber and aluminum layers, and the ballistic performance of aluminum-rubber combinations. It was concluded that the laminated composite plate’s energy absorption would increase, especially by increasing the thickness of the dumping rubber layer on the back of the aluminum sheets. In the strong metal-rubber interface interaction between the rubber and aluminum layer, the bullet is stopped before the pressure barrier is formed. The penetration depth and bulging height increase, and most of the energy are transmitted through the aluminum plate. In the weak metal-rubber interface interaction, a significant portion of the energy is absorbed by the rubber and air thanks to the pressure barrier.
Subject
Mechanical Engineering,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献