A 3D RVE-based computational homogenization approach for predicting the effective fourth-order elasticity tensor of periodic porous materials

Author:

Santos Wanderson Ferreira dos1ORCID,Proença Sergio Persival Baroncini1

Affiliation:

1. Department of Structural Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil

Abstract

In the present contribution, a computational homogenization framework is explored for predicting the effective fourth-order elasticity tensor of periodic porous materials. To improve the accuracy of the computational approach, an extrapolation strategy based on a posteriori error estimation is employed to estimate the effective elastic properties from the numerical results computed by the computational homogenization procedure. The computational strategy is implemented in ANSYS software using the Ansys Parametric Design Language, where new routines are created to provide an easy-to-use tool. In particular, the influence of void morphology in periodic porous materials is assessed. Three morphologies for the representative volume element are defined in the three-dimensional numerical analyses conducted by finite element simulations: (i) cube with a unidirectional void of circular cross-section, (ii) cube with a unidirectional void of square cross-section, and (iii) cube with a unidirectional void of octagonal cross-section. Different porosity values are simulated for the periodic porous material, and approximate parametric expressions are proposed to calculate the effective constitutive components in terms of void morphology and porosity. One concludes that void morphology has a strong influence on some components of the fourth-order elasticity tensor. Regarding the comparison between periodic materials with circular and square cross-section voids, significant differences are observed for the components associated with shear response in the plane cutting the void cross-section. Periodic materials with octagonal and circular cross-section voids have similar effective results. Overall, the computational approach is an interesting tool to design non-homogeneous materials, accounting for accuracy to predict effective properties.

Funder

Coordination for the Improvement of Higher Education Personnel

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3