Relation between durability and mechanical properties on glass fiber reinforced slag-based geopolymer

Author:

Alves Lais1ORCID,Leklou Nordine2,de Barros Silvio13ORCID

Affiliation:

1. Department of Mechanical Engineering, Federal Center of Technological Education (CEFET/RJ), Brazil

2. IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, University of Nantes, Saint-Nazaire, France

3. LINEACT CESI EA 7527, Saint-Nazaire, France

Abstract

This work seeks to improve the understanding of the durability of pure slag-based geopolymer composites containing glass fibers. Degradation by attack of saline mist, simulated by the salt-spray essay, was carried out for a period of 30 days. The test simulates the conditions found in the sea and nearby environments. The chamber works at relative humidity ∼97%, by nebulizing sodium chloride solutions with a concentration of 5% at 35 + 2 °C, solution pH between 6.5 and 7.2. After the cycle, the loss of mass and the compressive strength of the specimens were measured. The efflorescence formation in slag-based geopolymers is also assessed in this study to provide a better understanding of the effect of the synthesis parameters. It is noted that physical and chemical properties of geopolymers, and environmental exposure conditions can affect the rate of efflorescence formation. Besides the control set group, two different solutions to prevent efflorescence were tested, MgO and an efflorescence reduction agent from Sika®. The work aims to examine the effect of efflorescence formation on mechanical properties, through flexural and compressive strengths. A compromise between durability and mechanical properties was found for specimens enriched with 2% of efflorescence reduction agent.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The selection and design of earthen materials for 3D printing;Construction and Building Materials;2023-11

2. INORGANIC FIBRE REINFORCED GEOPOLYMER CONCRETE;Ceramics - Silikaty;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3