Affiliation:
1. Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
Abstract
Although conventional methods such as mechanical fastening, adhesive bonding and hot air welding have proven effective in dry conditions, they exhibit diminished efficacy in submerged environments. Hence, a thermoplastic welding technique with minimal dependence on surrounding media is essential. Ultrasonic spot welding (USW) represents a promising approach to thermoplastic joining, offering high efficiency and low operating costs. In this study, we investigate the efficacy of water-submerged ultrasonic spot welding (S-USW) for joining amorphous polyvinyl chloride (PVC) to PVC and semi-crystalline polypropylene (PP) to PP under submerged conditions. Our experimental results show that S-USW leads to a remarkable 39% and 21% increase in lap-shear strength for PVC/PVC and PP/PP welds, respectively, as compared to traditional USW techniques. We corroborate these findings with additional metrics such as Shore-D hardness tests, optical microscopy and scanning electron microscopy imagery, which collectively confirm the improved efficacy of S-USW over USW for joining PVC and PP.