Shape memory alloy based NiTi reinforced functionally graded material for vibration damping

Author:

Gangil Namrata1ORCID,Siddiquee Arshad Noor2ORCID,Mufazzal Sameera2,Muzakkir SM2,Maheshwari Sachin3

Affiliation:

1. Department of Mechanical Engineering, Ajay Kumar Garg Engineering College, India

2. Department of Mechanical Engineering, Jamia Millia Islamia, India

3. Division of Manufacturing Processes and Automation Engineering, Netaji Subhas University of Technology, India

Abstract

Shape memory based high performance nickel-titanium alloy particles were embedded by friction stir processing in graded concentration on the surface of light weight commercially pure magnesium cast plates. The novel functionally graded material so developed was analyzed for microhardness evolution and vibration damping effect. The nickel-titanium alloy particles were filled in a 2.5 wide × 3 mm deep slot and embedded on the surface by friction stir processing. A shallower slot 2.5 wide × 1.5 mm deep was milled over the previously embedded surface in which nickel-titanium alloy powder was again filled and embedded on the surface by second pass friction stir processing. This sequence of pass created the graded variation in nickel-titanium alloy concentration. The so fabricated functionally graded material was cut out from the plate and it was hot-forged to 2/3 thickness and subsequently quenched. The microstructural examination confirmed homogeneous dispersion of nickel-titanium alloy particles and clear interface between high and low concentration regions. The microhardness confirmed a uniform graded variation in hardness. The vibration damping tests confirm considerable improvement in the damping capacity of the fabricated functionally graded material.

Funder

A.P.J. Abdul Kalam Technical University (AKTU), Lucknow, India

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3