Investigation of erosive wear behaviors of AA6082-T6 aluminum alloy

Author:

Erdoğan Aygen A1,Feyzullahoğlu Erol2ORCID,Fidan Sinan3,Sinmazçelik Tamer2

Affiliation:

1. Department of Product Development, Ford Otosan, Gölcük – Kocaeli, Turkey

2. Department of Mechanical Engineering, Kocaeli University, Turkey

3. Faculty of Aeronautics and Astronautics, Kocaeli University, Turkey

Abstract

AA6082-T6 aluminum alloys are widely used in various applications in automotive and aircraft industries. They offer an attractive combination of surface properties, strength and corrosion resistance. The structural components manufactured by AA6082-T6 aluminum alloys can be exposed to impingement of solid particles throughout their service life. In this study, erosive wear behaviors of AA6082-T6 aluminum alloy were investigated. For the evaluation of erosive wear induced by solid particle impacts, a detailed study was conducted on AA6082-T6 aluminum alloy by using aluminum oxide (Al2O3) erodent particles. Two different particles were used in solid particle erosion tests, which are 60 mesh (212–300 µm) and 120 mesh (90–125 µm), respectively. Also, the aluminum alloy samples were tested under two different air pressures (1.5 bar and 3 bar). The erosive wear tests were carried out according to ASTM G76 standard at six various impact angles (15°, 30°, 45°, 60°, 75°, 90°). The surface roughness and morphology of worn samples were analyzed by using a non-contact laser profilometer. It was found that erodent particle size affected the surface erosion damage, erosion rate, crater morphology and roughness. The eroded surfaces of specimens were analyzed by SEM. The surfaces of specimens were also investigated by using EDS in SEM studies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3